Note on the Paper: Interior Proximal Method for Variational Inequalities on Non-polyhedral Sets

نویسندگان

  • Alexander Kaplan
  • Rainer Tichatschke
چکیده

In this paper we clarify that the interior proximal method developed in [6] (vol. 27 of this journal) for solving variational inequalities with monotone operators converges under essentially weaker conditions concerning the functions describing the ”feasible” set as well as the operator of the variational inequality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interior Proximal Method for Variational Inequalities on Non-polyhedral Sets

Interior proximal methods for variational inequalities are, in fact, designed to handle problems on polyhedral convex sets or balls, only. Using a slightly modified concept of Bregman functions, we suggest an interior proximal method for solving variational inequalities (with maximal monotone operators) on convex, in general non-polyhedral sets, including in particular the case in which the set...

متن کامل

Interior Proximal Method for Variational Inequalities: Case of Non-paramonotone Operators

For variational inequalities characterizing saddle points of Lagragians associated with convex programming problems in Hilbert spaces, the convergence of an interior proximal method based on Bregman distance functionals is studied. The convergence results admit a successive approximation of the variational inequality and an inexact treatment of the proximal iterations.

متن کامل

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

A Note on Globally Convergent Newton Method for Strongly Monotone Variational Inequalities

Newton’s method for solving variational inequalities is known to be locally quadratically convergent. By incorporating a line search strategy for the regularized gap function, Taji et al. (Mathematical Programming, 1993) have proposed a modification of a Newton’s method which is globally convergent and whose rate of convergence is quadratic. But the quadratic convergence has been shown only und...

متن کامل

Generalized Projection Method for Non-lipschitz Multivalued Monotone Variational Inequalities

We generalize the projection method for solving strongly monotone multivalued variational inequalities when the cost operator is not necessarily Lipschitz. At each iteration at most one projection onto the constrained set is needed. When the convex constrained set is not polyhedral, we embed the proposed method in a polyhedral outer approximation procedure. This allows us to obtain the projecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010